# 中国海克

## 选频<sup>14</sup>CO<sub>2</sub>-<sup>12</sup>CO<sub>2</sub>同位素激光器

费林 王克俊 诸旭辉\*

提要:我们研制了一台<sup>14</sup>CO<sub>2</sub>-1<sup>2</sup>CO<sub>2</sub>同位素激光器,测量到激光谱线80条,其中 40条是<sup>14</sup>CO<sub>2</sub>00<sup>0</sup>1-(10<sup>0</sup>0,02<sup>0</sup>0)<sub>1</sub>带的激光跃迁谱线,强线输出功率达4.0W以上; 实验还观察到同位素的竞争效应,发现即使<sup>14</sup>CO<sub>2</sub>成份低于<sup>12</sup>CO<sub>2</sub>,其激光辐射仍占 优势。

### A <sup>14</sup>CO<sub>2</sub>-<sup>12</sup>CO<sub>2</sub> isotope laser

Fei Lin, Wang Kejun, Zhu Xuhui

**Abstract:** A  ${}^{14}CO_2 - {}^{12}CO_2$  isotope laser has been developed and 80 laser lines were measured. 40 lines originated from lasing transition of  $00^{\circ}1 - (10^{\circ}0, 02^{\circ}0)_1$  band of  ${}^{14}CO_2$  and the strongest line output power was over 4.0 W. The competition effect between isotopes were experimentally observed and domination of lasing radiation of  ${}^{14}CO_2$  were found even if the content of  ${}^{14}CO_2$ was less than  ${}^{12}CO_2$ .

王爱华同言为我们们最于光谱板并绘制

自 1964 年 Patel<sup>[13</sup> 发明了 CO<sub>2</sub> 激光器 后, 1966 年, Wieder 和 Mccurdy<sup>[2,3]</sup> 用 <sup>12</sup>C<sup>18</sup>O<sub>2</sub> 做出了第一台 CO<sub>2</sub> 同位素激光器,随 后 Jacobs 和 Bowers<sup>[43]</sup>、Siddoway<sup>[5]</sup> 分别 做 出了 <sup>13</sup>CO<sub>2</sub> 和 <sup>14</sup>CO<sub>2</sub> 的激光器。以后,人们 对纯同位素的各种 CO<sub>2</sub> 激光跃 迁谱 线做了 大量的计算、测量和研究。本文介绍我们对一 台 <sup>14</sup>CO<sub>8</sub>-<sup>12</sup>CO<sub>2</sub> 同位素 激光器的研究结果。

二、实验装置

实验装置示意图如图1。本实验采用的 是一米长的水冷石英玻璃放电管,内径

. 524 .



1-镀金全反射镜(B=3m或B=5m); 2-NaCl 晶体布氏窗; 3-石英玻璃放电管; 4-镀铝平 面反射镜; 5-平面光棚; 6-镀铝平面反射镜 (测功率时放上); 7-碳斗; 8-功率显示器; 9、10-均为镀铝平面镜; 11-斩波器; 12-红外 光栅光谱仪; 13-热释电探测器; 14-示波器; 15-直流稳压电源

收稿日期: 1984年9月19日。 \* 北京原子能研究所。 10mm, 放电区长 85 cm, 两端为 NaCl 晶体 的布氏窗片。选用全外腔式结构,一端用镀 金反射镜,曲率半径为3m或5m,另一端系 平面光栅,由零级耦合输出激光。80线/mm 金属光栅闪耀波长为11 µm, 75 线/mm 金 属光栅闪耀波长为10 µm, 腔长173 cm。激 光输出经斩波器及铝平面反射镜, 照射到分 辨率为0.25 cm<sup>-1</sup>的红外光谱仪上。用 RO-L热释电红外探测器探测激光谱线的相对强 度,用功率计测量激光功率。实验中所用的 14CO。放射性气体,丰度约为60%,是中国科 学院原子能研究所制作提供的。采用特殊的 真空配气系统,将<sup>14</sup>CO<sub>2</sub>和<sup>12</sup>CO<sub>2</sub>的混合气 体以及 N2 和 He 充入管中; 用液氮冷却回收 14CO2 气体, 残余部分用填有 NaOH 的 冷井 处理。

### 三、实验结果和讨论

1. 激光谱线的测量

在工作电流 I = 8 mA, 放电电压 16.5 kV, 腔内总气压 18.7±0.2 Torr,  $CO_2: N_2: He = 1:1:4.2, {}^{14}CO_2: {}^{12}CO_2 = 60\%:$ 40% 条件下, 我们用 80 线/mm 的金属光栅 选频,观察到了<sup>14</sup>CO<sub>2</sub>的00°1-(10°0,02°0)<sub>1</sub> 带(下文中简称I带)P支[P(4)~P(42)]和  $R \, \overline{z} [R(4) \sim R(42)]$ 的激光跃迁谱线共40 条,其中的一条谱线 P(4),  $\tilde{\nu} = 862.97 \, \mathrm{cm}^{-1}$ , 据我们所知是以前从来未观测到的, 该波数 与美国林肯实验室的 Freed 等人发表的计算 值十分符合。另外还测到12CO2的I带P支  $[P(10) \sim P(34)]$  和 R 支  $[R(12) \sim R(28)]$ 的激光跃迁谱线22条。表1给出了<sup>14</sup>CO<sub>2</sub> 的谱线测量值和 Freed 等人用拍频法所得到 的测量值。从表1所见二者结果是一致的。 <sup>14</sup>CO<sub>2</sub>的强支线 P(20), R(20) 输出功率均 在4.0W以上,并可进一步提高。

当改用 75 线/mm 金属光栅选频时, 我 们进一步测到<sup>12</sup>CO<sub>2</sub>00<sup>0</sup>1-(10<sup>0</sup>0, 02<sup>0</sup>0)<sub>II</sub>带 表1 <sup>14</sup>CO<sub>2</sub> 激光谱线

| 0001-[1000, 0200]I |                                     |                                            |      |                                     |                                           |  |  |  |
|--------------------|-------------------------------------|--------------------------------------------|------|-------------------------------------|-------------------------------------------|--|--|--|
| 现顶口                | R支                                  | 系 数6.2                                     | ·增益  | P支                                  | 边蒙的                                       |  |  |  |
| LINE               | 测量值<br>±0.25<br>[cm <sup>-1</sup> ] | 文献值 <sup>;[6]</sup><br>[cm <sup>-1</sup> ] | LINE | 测量值<br>±0.25<br>[cm <sup>-1</sup> ] | 文献值 <sup>[6]</sup><br>[cm <sup>-1</sup> ] |  |  |  |
| 4                  | 869.96                              | 869.69                                     | 4    | 862.97                              | 862.99*                                   |  |  |  |
| 6                  | 871.44                              | 871.47                                     | 6    | 861.42                              | 861.40                                    |  |  |  |
| 8.41               | 873.04                              | 871.96                                     | 8    | 859.78                              | 859.79                                    |  |  |  |
| -10                | 874.32                              | 874.43                                     | 10   | 858.14                              | 858.16                                    |  |  |  |
| 12                 | 875.81                              | 875.88                                     | 12   | 856.52                              | 856.52                                    |  |  |  |
| 014.0              | 877.32                              | 877.32                                     | 14   | 854.79                              | 854,86                                    |  |  |  |
| - 16               | 878.61                              | 878.74                                     | 16   | 853.18                              | 853.18                                    |  |  |  |
| 18                 | 880.35                              | 880.15                                     | 18   | 851.58                              | 851.48                                    |  |  |  |
| 20                 | 881.55                              | 881.54                                     | 20   | 849.78                              | 849.78                                    |  |  |  |
| 22                 | 882.86                              | 882.91                                     | 22   | 848.00                              | 848.06                                    |  |  |  |
| 24                 | 884.28                              | 884.27                                     | 24   | 846.32                              | 846.32                                    |  |  |  |
| 26                 | 885.60                              | 885.61                                     | 2026 | 844.55                              | 844.56                                    |  |  |  |
| 28                 | 886.93                              | 886.93                                     | 28   | 842.80                              | 842.79                                    |  |  |  |
| 30                 | 888.26                              | 888.23                                     | 30   | 841.05                              | 841.00                                    |  |  |  |
| 32                 | 889.59                              | 889.52                                     | 32   | 839.21                              | 839.20                                    |  |  |  |
| 34                 | 890.93                              | 890.79                                     | 34   | 837.39                              | 837.37                                    |  |  |  |
| 36                 | 892.17                              | 892.04                                     | 36   | 835.57                              | 835.54                                    |  |  |  |
| 38                 | 893.40                              | 893.28                                     | 38   | 833.67                              | 833.68                                    |  |  |  |
| 40                 | 894.65                              | 894.50                                     | 40   | 831.88                              | 831.81                                    |  |  |  |
| 42                 | 895.78                              | 895.70                                     | 42   | 830.00                              | 829.93                                    |  |  |  |

\* 系计算值

 $P \ge [P(12) \sim P(30)]$  和  $R \ge [R(12) \sim R(24)]$  的激光谱线17条,还增测到了 <sup>12</sup>CO<sub>2</sub>I带R(10)线。由于光栅闪耀波长为 10  $\mu$ m,不利于.<sup>14</sup>CO<sub>2</sub>的激光振荡,所以 <sup>14</sup>CO<sub>2</sub>的激光输出谱线略有减少。又因光栅 零级耦合输出率减小,<sup>12</sup>CO<sub>2</sub>和<sup>14</sup>CO<sub>2</sub>的激 光输出功率均有明显下降,但<sup>14</sup>CO<sub>2</sub>的各激 光线强度仍比<sup>12</sup>CO<sub>2</sub>的各对应线强得多。

我们的实验中始终没有观察到<sup>14</sup>CO<sub>2</sub> 00<sup>0</sup>1-(10<sup>0</sup>0, 02<sup>0</sup>0)<sub>11</sub>带的激光跃迁,说明该

. 525 .

带增益系数太小。这与文献[7]所给出的结 果是一致的。表2列出了文献[7]各种纯同 位素的小信号增益系数。从表中可见 <sup>14</sup>CO<sub>2</sub>用00<sup>0</sup>1-(10<sup>0</sup>0,02<sup>0</sup>0)<sub>II</sub>带的增益系数 是十分小的。其增益系数小的主要原因是 费米共振效应起了决定的作用<sup>[8]</sup>。

| 861.40          | 154.108 0表                           | 2     | 871.44 | 9     |
|-----------------|--------------------------------------|-------|--------|-------|
| et eas          | 小信号增益                                | 12CO2 | 13CO2  | 14CO2 |
| 856.53          | $\alpha_0$ (%cm <sup>-1</sup> )      | 1.07  | 0.64   | 0.55  |
| 854 <b>II</b> 0 | $\alpha_0(\% \text{cm}^{-1})$        | 0.9   | 0.26   | 0.099 |
| 测量              | $\frac{\alpha_0 - I}{\alpha_0 - II}$ | 1.2   | 2.5    | 5.6   |

#### 2. 同位素竞争效应

从图 2 中可以看出  ${}^{14}CO_{2}I$  带的激光谱 线比  ${}^{12}CO_{2}$  的对应带激光谱线出得多,而且 强。当我们改变  ${}^{14}CO_{2}$  和  ${}^{12}CO_{2}$ 的比例后,发 现尽管  ${}^{14}CO_{2}$  的成分由 60%降低到 40%, 而且光栅闪耀波长为 10  $\mu$ m,不利于  ${}^{14}CO_{2}$  激 光振荡的情况下,  ${}^{14}CO_{2}$  的激光输出 谱 线 仍 变化不大,激光辐射始终占优势,例如  ${}^{14}CO_{2}$ 的 I 带 R(20)比  ${}^{12}CO_{2}$  的 R(20) 输出功率仍 大三倍。



从表 2 中可以看出,在<sup>12</sup>CO<sub>2</sub>和<sup>14</sup>CO<sub>2</sub>单 独存在的情况下,<sup>12</sup>CO<sub>2</sub>I带 P(20)的小信号 增益系数比<sup>14</sup>CO<sub>2</sub>相应的谱带小信号增益系 数约大一倍, 而当<sup>12</sup>CO<sub>2</sub>和<sup>14</sup>CO<sub>2</sub>气体混合时,实验观察到的现象却与此恰恰相反。

我们认为这是同位素竞争效应所造成的。Green等人<sup>[3]</sup>在<sup>12</sup>CO<sub>2</sub>-1<sup>3</sup>CO<sub>2</sub>同位素激光器中也观察到了类似的同位素竞争效应。他们的理论解释同样也适用于我们<sup>14</sup>CO<sub>2</sub>-1<sup>2</sup>CO<sub>2</sub>同位素激光器的情况。

OO<sub>2</sub> 两种同位素之间的共振能量交换几 率是很大的<sup>[10,11]</sup>,因而它们之间有良好的耦 合。在<sup>14</sup>CO<sub>2</sub>和<sup>12</sup>CO<sub>2</sub>的激光上能级(00<sup>0</sup>1) 各自实现粒子数反转的同时,激光上能级同 位素分子之间亦会很快地达到玻尔兹曼平 衡。而<sup>14</sup>CO<sub>2</sub>激光上能级的振动能约比<sup>12</sup>CO<sub>2</sub> 激光上能级的振动能低123cm<sup>-1[5]</sup>,因此玻 尔兹曼分布将更有利于<sup>14</sup>CO<sub>2</sub>激光上能级的 粒子数分布。

此外在放电过程中 CO2 将会发生分解,

 $CO_2 \Longrightarrow CO + \frac{1}{2}O_2$ 

分解形成的 CO 同位素分子亦会与 CO<sub>2</sub> 同位 素分子发生能量交换。根据 J. Siddoway<sup>[5]</sup> 所发表的 CO<sub>2</sub> 同位素分子的能级值, E. Plyer<sup>[12]</sup>等人给出的 CO 同位素第一振动 激发态的能级值,以及 Herzberg 关于同位 素分子振动能的计算,我们估计 <sup>12</sup>CO(*v*=



. 526 .

1) 和 <sup>14</sup>CO(v=1)的振动能级比 <sup>14</sup>CO<sub>2</sub>(00<sup>0</sup>1) 的振动能级分别低 83 cm<sup>-1</sup> 和 172 cm<sup>-1</sup> 左 右,<sup>[12]</sup>, 而比<sup>12</sup>CO<sub>2</sub>(00°1)的振动能级分别低 206 cm<sup>-1[2]</sup> 和 295 cm<sup>-1</sup>。如图 3 所示. <sup>12</sup>CO 和 <sup>14</sup>CO 的振动能级更接近 <sup>14</sup>CO<sub>2</sub> (00°1)的振动能级,进一步有利于<sup>14</sup>CO2激 光上能级的粒子数分布。最终的结果是 <sup>14</sup>CO<sub>2</sub>的激光辐射跃迁在<sup>14</sup>CO<sub>2</sub>-<sup>12</sup>CO<sub>2</sub>同位 素激光振荡器中占优势。

#### 四、 语 结 束

我们研制了一台选频14CO2-12CO2同位 素激光器, 使通常 <sup>12</sup>CO<sub>2</sub> 激光器的光谱范围 从9~11 µm, 扩展到了9~12 µm。

同位素竞争效应的存在使我们看到混合 式的 CO2 同位素激光器不仅可以比各种纯 CO2 同位素的激光器有更大的谱线输出范 围, 而且可以节省十分昂贵的稀有同位素 [10] J. C. Stephensen et al.; J. Chem. Phys., 1968, <sup>14</sup>CO<sub>2</sub> 或 <sup>13</sup>CO<sub>2</sub>, 如果把 <sup>14</sup>CO<sub>2</sub>, <sup>13</sup>CO<sub>2</sub>和 <sup>12</sup>CO<sub>2</sub> 三者由小到大的一定比例混合起来,也 许可以获得更多的激光输出谱线。

作者对吴映菊、吕善华和梁明清等同志 在技术上给予的帮助,表示衷心的感谢。

#### Ý 献 老

- [1] C. K. N. Patel; Phys. Rev., 1964, 136, No. 5A, 1187~1193.
- [2] I. Wieder, G. B. McCurdy: Phys. Rev. Lett., 1966, 16, No.13, 565~567.
- [3] G. B. McCurdy, I. Wieder; IEEE J. Quant. Electr., 1966.QE-2, 385~387.
- [4] G. B. Jacobs, H. C. Bowers; J. Appl. Phys., 1967, 38, No. 6, 2692~2693.
- [5] J. C. Siddoway; J. Appl. Phys., 1968, 39, 4854~ 4855
- [6] Charles Freed et al.; IEEE J. Quant. Electr., 1980, QE-16, No. 11, 1195.
- [7] Charles Freed; IEEE J. Quant. Electr., 1982, QE-18, No. 8, 1220~1228.
- [8] M. Silver et al.; J. Appl. Phys., 1970, 41, 4566~ 4568.
- [9] W. H. Green, W. T. Whituey; J. Appl. Phys., 1970, 41, No. 1, 437.
- 48, 4790.
- [11] R. D. Sharma; Phys. Rev., 1969, 177, 102.
- [12] E. K. Plyer et al.; J. Res. Nat. Bur. Stand., (us), 1955, 55, 183. 40 pps; the highers average output pow

数如下: 储能电容器 01 0。各为 0.12 μF. 电量预电离电容 Cs 为 3800 pP, 42 不紫外预

快路目線-11989年9月前的日、0.1-23

言口注意自己法律的线

TEA CO。 波光器 自1970年 同世以来. 率和平均增出功率的影响。以及添加大量 60

. 527 .